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COMPUTER SOLUTIONS OF THE GRAVITATIONAL N-BODY PROBLEM
By Frank Hohl

NASA Langley Research Center

Thermalization effects in a one-~dimensional model for a self-gravitating
system have been investigated for systems containing low nuﬁbers of mass sheets
(up to 40). It is found that the fluctuation of the kinetic energy is inversely
proportional to the square root of the number of particles in the system.

The stability of stationary states for one-dimensional self-gravitating
systems is investigated by solving the N-body problem on an electronic com~
puter. The number of "stars" in such systems is large (several lOOO);SO'ﬁnat
the systems can be treated as collisionless. A variational method is used to
show that stationary distribution functions that are always decreasing in giiﬁg
outward. from the center of the system are stable. For other stationary diséri-
butions the system does not represent a minimum energy configuration and the
system may be unstable. Computer solutions illustrating the resulting insta-
bilities ére presented.

Numerical experiments with a simple two-dimensional rod model show that
the spiral structure and other filamentary structure of galaxies may result

from purely gravitational effects.
THERMALIZATION EFFECTS IN A ONE-DIMENSIONATL, STELLAR SYSTEM

In a one-dimensional system crossings will always take place so that one
can expect the system to approach a Maxwellian distribution. An exact double-
precision computer program was used to investigate thermalization effects for

]

low numbers of "stars." By an "exact" program we refer to a program where the '
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shortest crossing time for a mass sheet is determined and the system is then
advanced by that time and the process is repeated. This, of course, differs
from the model used for the results obtained for systems with large numbers of
mass sheets where the system is always advanced for a constant time interval At,

"exact"

irrespective of the number of crossings during this time interval. The
program is very accurate. For example, after time reversing the numerical inte-
gration of a typical system investigated it was found that the initial condi~

tions were reproduced accurately to 12 digits.

The relaxation or characteristic time for a system of stars is given by

-1/2
Te = (UuGp) / (1)
whers - ¢#*14 the gravitational constant and p 1s the mass density. The
characteristic length of interest is the Jeans or Debyé length D which is
defined by
D= VTTC (2)

where Vp 1is the velocity dispersion of the gystem of stars.

Lecar (ref. 1) has investigated the exact one-dimensional motion of low
numbers of "stars" and finds that to order nDrq there exists no thermaliza-
tion. In the present study of thermalization effects a low number of mass
sheets was chosen so that the system can be followed for a long period of time.
In order to obtain meaningful results time averages of the systems are inves-
tigated. The constant time interval used in the avegﬁging process is taken to
be smaller than the average crossing time for Sheets:in the system. The time

2

averages are taken over times of the order n2p Te Where nD ~ N, the number

of mass sheets in the system. It should be noted that the investigation of



thermalization effects is still in progress and only some of the initial
numerical results are presented here.

For all of the systems investigated it was found that the time-averaged
potential energy (P) and kinetic energy (T) satisfied the virial theorem. That
is, <E>/<P> = 0.5 with an accuracy of at least three digits. The <> gignify
time-averaged quantities. As discussed by Ford (ref. 2) the Poincare recurrence
time and the general behavior of the system is dependent on the initial con-
ditions. For example, we can choose special initial conditions such that the
time behavior of the system is very nearly periodic. However, for the results
presented here the initial conditions were arbitrarily chosen.

Figure 1 shows the time-averaged velocity distribution and density for a
3-particle system. The solid line for the velocity distribution corr~s—onds
to a Maxwellian distribution and is obtained by integrating A exp(—nU) over

x. That is,

#(v) = g\/??xp[ %WE] (3)

The solid line for the density is given by

n(x) = = nGmeN= sechz(nGmQNnx) (L)

Wl

The value of k is obtained from

K

-2 -1 (5)
XI> + XP> o<

The circles in figure 1 represent the time-averaged numerical results. The
Mexperimental" velocity distribution is near the Maxwellian distribution.
However, the variation of the density indicates that there is some near-

periodicABehavior of the system. Such near-periodic behavior is likely



to occur for very low numbers of "stars." Figure 2 shows the results for a
four-sheet system. Again, the variation of the time-averaged velocity dis-
tribution and density indicates that there is near-oscillatory behavior of the
system. This oscillatory behavior has also been observed by plotting the
kinetic energy of the system as a function of time. The fluctuations of the
kinetic energy of the systems investigated are very violent and show no
decrease in time. The fact that these fluctuations show no decrease in time
indicates that a Maxwellian distribution can be reached while the fluctustions
in the kinetic energy remain extremely violent. For example, figure 5 shows
the time varistion of the kinetic energy for & 6-particle system. The corre-
sponding time-averaged velocity distribution and density are shown in figure L,
We see that the "experimental" points are near the Maxwellian distribution for
both curves. Figure 5 shows that for a 10-particle system the "experimental"
velocity distribution and density points reproduce the theoretical Maxwellian
curves. The results presented so far were dbtained.by time averaging the sys-
tem over times of the order of N2Tc and the results indicate that the time-
avgraged distribution is very nearly Maxwellian. Howéver, to show relaxation
to a Maxwellian distribution one should prepare a system which is initially non-
Maxwellian and then observe the relaxation to a Maxwellian distribution. -This
was attempted and the results for s 40-particle system are shown in figure 6.
The solid line corresponds to a Maxwellian velocity distribution. The circles
represent the initial veloeity distribution of the system obtained by time
averaging over SNv.. After the system was advanced in time for 2N2 charac-
terisfic periods it was found that the experimental veloecity distribution was
still idenfical to the initial distribution. Thus one must conclude that no

relaxation to a Maxwellian distribution occurs to order NQTC.

)_‘_.



Another quantity which gives information on the behavior of the system is

the correlation function for the kinetic energy
c(r) = <((t) - <N T(t + ) - <>)> (6)

This quantity is plotted in figure 7 for a 6-particle system and the result
shows that oscillations in the kinetic energy have a long-time memory and are
only slowly damped. The energy correlation function for a 4Oo-particle system
is shown in figure 8. The resﬁlts indicate that for small T there exists
Landau damping but some smaller correlation persists for a long time. If the
time average is taken over a lqnger time, then the oscillations in C(T) are
reduced for large T and remain the same for small 7.. In figure 9 the rela-

tive fluctuation of the kinetiec energy

u=g~—(rg—) (7)

is plotted as a function of the number of particles N. It can be seen that
the points fall near the curve ;/Vﬁ' which indicates that the oscillations in
the kinetic energy of the systems do represent thermal fluctuations. It is
thereforé'difficult to explain the long~time correlation shown in figures 7

and 8.
MINTMUM ENERGY PROPERTY

It will now be shown that the minimum energy.property which has been
obtained by Hohl and Feixv(ref. 3) for a special distribution can be extended
to arbitrary distribution functions. The water-bag model illustrated in fig-
ure 10 is used in the analysis. The contours v+(k)(x,t) and v_(k)(x,t)
describe surfaces of constant distribution function f = fx. According to the

Liouville theorem the phase space bounded by the contours is incompressible.



In the limit of a very large number of contourg the water-bag model can be used
to construct arbitrary distribution functions.

To simplify the equations we assume symmetric contours v_,.(k) = v_(k) = v(k).
It is easily shown (ref. 4) that the equations which stationary contours v(k)

must satisfy are

(k)
+(E) d---—dx _“E =0 (8)
E is given by
E(x) = th(g - az Ake(k)(x)> (9)
K

where G 1is the gravitational constant, N 1s the number of mass sheets, each
of mass m per unit area, in the system.
Ax 1s defined by the distribution function

£ = Z Ak[é_l(v - v_(k)) - B_l(v - v+(k))]

k

- ”
with B_l(z) = f 8(t)at. The variable e(k) used in equation (9) is

-00

X
olx) f A8t )at- (10]
2, ()
where xs(k) * is the end point of the contour k. Thé total energy of the sys-
tem is e
%K)
W= Z f g dx
[ J )
(k)
XS 3
1 (k) N (k)
_fo(k) 3mAkv ~ 2mxAy | 4nCGm 5—22Ak9 (11)
k



Extremizing the integral for W requires that g -satisfy the Euler-lagrange

equation
og _daf e
20(K) dxav(k)) (2)
(k)
MOR S (13)

which are the equations for the stationary contours.
If equations (13) are to represent a minimum energy configuration the
Legendre's criterion of the second variastion of g must be satisfied. That

is, the quadratic form whose coefficient matrix has the elements

y 32
% " D e
ov oyt
must not be negative. Since only the diagonal elements
k
CHIE ZmAkv( ) (15)
are nonzéro, the Legendre condition requires that
A 20 (16)

for all k. Equstion (16) is equivalent to stating that the distribution func-
tion must always decrease in going outward from the center of the system where
f = f; must be the largest. If equation (16) is satisfied, the system is a
minimum energy configuration and is always stable. However, if Ay 20 is not
satisfied for all k, the system is not a minimum energy configuration. The
system may then be unstable since the contours v(k) can now be deformed while
keeping the total system energy constant. Numerical experiments with a one-~

dimensional model have been performed for two-contour systems to illustrate the -



interchange instability which destroys the stationary state. For the two sys-
tems investigated Al = —A2. In the first case shown in figure 11 the ratio of
the minimum to maximum star energy is O.4. The figure shows that the stationary
contours of the 2000-star system are quickly distorted while the hesvier outer
water bag tries to displace the inner bag. Figure 12 shows the results for a
2000-star system with a ratio of minimum to maximum star energy equal to 0.25.
The growth of the instability is now much slower because the central water bag
or hole is much smaller.
Another consequence of the minimum energy property is that any stable

stationary state for which equation (16) is satisfied can never be reached.
TWO-DIMENSIONAL: COMPUTER EXPERIMENTS FOR STELLAR SYSTEMS

The motion of mass rods that are of infinite extent in the z-direction
has been computed for 500-rod systems. The force acting on a particular mass
rod is obtained by summing directly over the l/r force from.gach mass rod.
This ig a time-consuming proceﬁé and the application of fast methods of solving
‘the Poisson equation would speed up the calculations. A fast method of solving
the Poisson equation has been used by Hockney (ref. 5) who followed the motion
of 2000 mass rods. In comparing the results obtained by the two different
methods it was found that they are nearly identical. |

The system of mass rods is advanced in time in the following manner.
First; the forcé acting on all particles is computed Ey summing the l/r forece
for all particles. Second; the system is advanced for a small time step At
and tﬁe process is repeated. The results of the calculations are displayed in

x-y coordinate space. During the calculations the total energy and angular



momentum are computed to check on the accuracy of the computations. The nor-
malizations U4xG =1 and m =1 have been used for all the calculations.

Figure 13 shows the time development of a system of 400 mass rods which
has an initially rectangular distribution of uniform density in x-y space.
The system has an initial thermal energy equal to 1/5 of the initial potential
energy plus an initial solid-body rotation egual to nearl& t&ice that required
to oppose the gravitational force toward the center of the system. It can be
seen from figure 13 that the system quickly develops into a barred spiral.
However, at a later time the spiral structure has almost completely disappeared
and the system approaches a configuration similar to an elliptical galaxy. The
time has been normalized to mr‘l, the inverse of the frequency of the initial
rotation.

The remaining two-dimensional calculations were performed for 500-particle
systems which have an initially uniform circular distribution in x-y space
and zero thermal velocity. The evolution of such systems is then studied for
various values of initial solid-body rotation. The initial positions are
obtained by usiﬁg a random number generator which gives s nearly uniform dis-~
tribution over a circular region of the x-y plane.

We first present the results for the case where the frequency of rotation,
wp, equals Wg 5 the frequenéy required such that the centrifugal force balances
the gravitational force. Thus,

w. = w, = 2nGo (17)
where p 1is the mass density of the rods per unit length. The resulting
evolution of the system is shown in figure 14. The time has been normalized to
mg'l. Figure 14 shows that the system is relatively stable. At g = 6.52ug‘l

there appear four irregular spiral arms. However, at a later time the spiral



arms almost completely disappear and the system takes an appearance reminiscent
of an elliptical galaxy.

The results for the case of zero initial rotation are presented next. Fig-
ure 15 shows that after an initial implosion the system expands and presents
some highly irregular filamentary structure. After a second implosion the tem-
peratufe of the system increases due to the randommness of the initial positions.
The pressure due to the temperature then tends to reduce the oscillations and
the system again takes a form similar to an elliptical galaxy.

For wp = %—a@ the system again contracts initially and then expands.

The results are shown in figure 16. An irregular structure appears initially
which tends to disappear at a later time. Also at time t = A.ng’l the sys-
tem is clustered into two aggregates which combine again at a later time.

In figure 17 the results for the case w, = l.Baéﬁ»are shown. The system
pulsates and shows some irregular structure. The genepél behavior is very
similar to that of the previous case for w, = %-wg. ‘The results for the two-

dimensional stellar system are of a preliminary nature and additional work is

required to investigate the evolution for systems with larger numbers of "stars."

10
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Figure 1l.- Time-averaged velocity distribution and density for a
S-particle system.
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Figure 3.~ Time variétion of the kinetic energy for a 6-particle system.
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Figure 6.- Time-averaged density and velocity distribution for a
L4O~particle system.
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Figure 11.~ Illustration of the time development of an unstable 2-contour
system with v = 0.k,
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(a) Evolution up to t = 2.2Lkw.~1.
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(2) Evolution up to t = 6.32mg"l

Figure 17.- Evolution of a cylindrical stellar system with w,. = 1.3m




40

_ -1
t—13.5wg
AN Y )
20 "‘3" (
uly ¢ ¢
%...* ) @ : . Q. e .
L] ’*“ sq‘ ‘9 ¢ o “
Y O P o4 "o [}
. ’ s’
ugo 020 %Y %h’
® X
'Jﬂa;o%'?’ b
-20 e A
®
~40
40
t= 1540 t= 16205
LA™ i 4, f oy = 10.204
0 5
v
i ‘:ﬁrﬁ . §
93.9 , 9‘33 eyf‘ k
o 0§
8
a o ° 9“&
. =
9 L] 9&
[+ 299 § ] e :la
W * ] ’,
? .t%ﬁ 8 o
. q Giﬂ.% a“ "
: . " L)
a i
40 ~40 -20 0 20 40
X X

(b) Evolution up to t = l6.2cog"l.

Figure 17.- Concluded.
L

NASA-Langley, 1967



